Migration and localization of metal atoms on strained graphene.
نویسندگان
چکیده
Reconstructed point defects in graphene are created by electron irradiation and annealing. By applying electron microscopy and density functional theory, it is shown that the strain field around these defects reaches far into the unperturbed hexagonal network and that metal atoms have a high affinity to the nonperfect and strained regions of graphene. Metal atoms are attracted by reconstructed defects and bonded with energies of about 2 eV. The increased reactivity of the distorted π-electron system in strained graphene allows us to attach metal atoms and to tailor the properties of graphene.
منابع مشابه
Atomic Insights into the Melting Behavior of Metallic Nano-catalysts
In the present study, molecular dynamics simulations have been utilized to provide fundamental understanding of melting behavior of pure Pd and Pt nanoparticles with the size of 10 nm in diameter, both free and graphene-supported during continuous heating. The embedded atom method is employed to model the metal-metal interactions, whereas a Lennard-Jones potential is applied to describe the met...
متن کاملStrained graphene: tight-binding and density functional calculations
We determine the band structure of graphene under strain using density functional calculations. The ab-initio band strucure is then used to extract the best fit to the tight-binding hopping parameters used in a recent microscopic model of strained graphene. It is found that the hopping parameters may increase or decrease upon increasing strain, depending on the orientation of the applied stress...
متن کاملThe electronic and diffusion properties of metal adatoms on graphene sheets: a first-principles study
We use first-principles calculations to investigate the geometric, electronic and magnetic properties of metal adatoms on two typical graphene substrates (monolayer and bilayer). Firstly, we study the adsorption behaviors and the doping effects of metal atoms on pristine and defective bilayer graphene sheets (PBG and DBG). It is found that the metal doping in DBG sheets is more stable than that...
متن کاملEmbedding transition-metal atoms in graphene: structure, bonding, and magnetism.
We present a density-functional-theory study of transition-metal atoms (Sc-Zn, Pt, and Au) embedded in single and double vacancies (SV and DV) in a graphene sheet. We show that for most metals, the bonding is strong and the metal-vacancy complexes exhibit interesting magnetic behavior. In particular, an Fe atom on a SV is not magnetic, while the Fe@DV complex has a high magnetic moment. Surpris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 19 شماره
صفحات -
تاریخ انتشار 2010